Modelling the onset of oxide formation on metal surfaces from first principles

نویسنده

  • Lucio Colombi Ciacchi
چکیده

The formation of ultrathin oxide layers on metal surfaces is a non-thermally-activated process which takes place spontaneously at very low temperatures within nanoseconds. This paper reports mechanistic details of the initial oxidation of bare metal surfaces, in particular Al(111) and TiN(001), as obtained by means of first-principles molecular dynamics modelling within the Density-Functional Theory. It is shown that the reactions of bare metal surfaces with O2 molecules take place according to a “hotatom” dissociative mechanism which is triggered by the filling of the σ∗ antibonding molecular orbital and is characterised by a sudden release of a large amount of kinetic energy. This released energy provides a driving force for metal/oxygen place-exchange processes which are responsible for the onset of oxide formation at virtually 0 K and at oxygen coverages well below 1 monolayer (ML). Further simulations of the oxidation reactions reveal that a disordered ultrathin oxide forms on Al(111), whereas a rather ordered structure develops on TiN(001) following a selective oxidation process which leaves clusters of Ti vacancies in the TiN lattice underneath the oxide layer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In this paper, the effect of nanocatalytic metal-organic framework based on copper metal and bis-tetrazolamine (CuBTA) ligand functionalized with cobalt (II) oxide nanoparticles on the thermal decomposition behavior of ammonium perchlorate (AP), using differential survey calorimetry (DSC) has been reviewed. First, the metal-organic framework (CuBTA) was synthesized from the raw materials of cop...

متن کامل

Metal Oxide/Pt Based Nanocomposites as Electrocatalysts for Oxygen Reduction Reaction

Fuel cell is a promising choice for clean energy because of its eco-friendly system, high energy conversion efficiency and high power density. Recently, much of the research work is focused on the system of combining metal oxides to increase the durability and surface area and to reduce the cost. In this study, among the various fabrication methods, we used the precipitation method to synthesis...

متن کامل

Design Principles for Metal Oxide Redox Materials for Solar-Driven Isothermal Fuel Production.

The performance of metal oxides as redox materials is limited by their oxygen conductivity and thermochemical stability. Predicting these properties from the electronic structure can support the screening of advanced metal oxides and accelerate their development for clean energy applications. Specifically, reducible metal oxide catalysts and potential redox materials for the solar-thermochemica...

متن کامل

Synthesis of Different Copper Oxide Nano-Structures From Direct Thermal Decomposition of Porous Copper(ΙΙ) Metal-Organic Framework Precursors

Copper oxide nanostructures have been successfully synthesized via one-step solid-state thermolysis of two metal-organic frameworks, [Cu3(btc)2] (1) and [Cu(tpa).(dmf)] (2), (btc = benzene-1,3,5-tricarboxylate, tpa = therephtalic acid = 1,4-benzendicarboxylic acid and dmf = dimethyl formamide) under air atmosphere at 400,  500, and 600°C. It has also been found that the reaction temperature pla...

متن کامل

Geometry and electronic structures of magic transition-metal oxide clusters M9O6 „MÄFe, Co, and Ni..

The magic oxide clusters M 9O6 (M5Fe, Co, Ni) are found by using reactive laser vaporized cluster source. From the first-principles calculations, the possible equilibrium geometries for these three oxide clusters are determined to be a C2v symmetry, where the skeleton composed of 9 metal atoms also has C2v symmetry, different from the equilibrium structures of pure transition metal cluster M 9 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008